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Abstract

Elastic layers bonded to rigid surfaces have widely been used in many engineering applications. It is commonly
accepted that while the bonded surfaces slightly influence the shear behavior of the layer, they can cause drastic changes
on its compressive and bending behavior. Most of the earlier studies on this subject have been based on assumed dis-
placement fields with assumed stress distributions, which usually lead to ‘‘average’’ solutions. These assumptions have
somehow hindered the comprehensive study of stress/displacement distributions over the entire layer. In addition, the
effects of geometric and material properties on the layer behavior could not be investigated thoroughly. In this study, a
new formulation based on a modified Galerkin method developed by Mengi [Mengi, Y., 1980. A new approach for
developing dynamic theories for structural elements. Part 1: Application to thermoelastic plates. International Journal
of Solids and Structures 16, 1155–1168] is presented for the analysis of bonded elastic layers under their three basic
deformation modes; namely, uniform compression, pure bending and apparent shear. For each mode, reduced govern-
ing equations are derived for a layer of arbitrary shape. The applications of the formulation are then exemplified by
solving the governing equations for an infinite-strip-shaped layer. Closed form expressions are obtained for displace-
ment/stress distributions and effective compression, bending and apparent shear moduli. The effects of shape factor
and Poisson�s ratio on the layer behavior are also investigated.
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1. Introduction

Elastic layers bonded to rigid surfaces (Fig. 1a) are widely used in many engineering applications, such
as, for elastomeric bearings, sealing components or elastic foundations to machinery and motors. Earlier
studies on this subject (e.g, Gent and Lindley, 1959; Chalhoub and Kelly, 1990) have clearly shown that
rigid plates bonded to top and bottom faces of an elastic layer may cause considerable changes on the layer
behavior. As an example, the compression or bending modulus of a bonded elastic layer may be several
orders of magnitude greater than that of the corresponding unbonded layer due to the constraint of lateral
expansion of material at the bonded surfaces. It is also known that the effects of bonded surfaces on layer
behavior highly depend on the geometric and material properties of the layer, and becomes more pro-
nounced when the material is nearly incompressible (Tsai and Lee, 1998; Koh and Lim, 2001).

As stated by Gent and Meinecke (1970), there are three basic deformation modes for a bonded elastic
layer (Fig. 1a): uniform compression/extension, pure bending and apparent shear (Fig. 1b–d). Comprehen-
sive analysis of a bonded elastic layer under its each deformation mode is essential for understanding the
effects of bonded surfaces on its behavior, for studying the dependence of this behavior change on its geo-
metric and material properties and for deriving closed form expressions for its stiffnesses; namely, axial,
bending and shear stiffnesses, which are usually the key parameters in the design of mechanical and struc-
tural components composed of these units (Naeim and Kelly, 1999).

Many researchers have studied the compressive and/or bending behavior of bonded elastic layers, spe-
cifically bonded ‘‘rubber’’ layers. Most of these studies have been focused on the derivation of closed form
expressions for their stiffnesses. Even though the behavior of rubber is indeed highly nonlinear and it may
undergo considerable finite deformations, in most of the previous analytical treatments, rubber has been
assumed to behave linearly and derivations have been made for small strains because the use of finite strain
analysis with nonlinear constitutive models usually leads to highly nonlinear and complex equations (Kelly,
1997). In fact, in almost all cases, some additional simplifying assumptions have had to be made on the
deformed shape and/or on the state of stress to obtain simple design formulas (Constantinou et al.,
1992). It is also noteworthy that most of the initial studies on bonded rubber layers were based on the
assumption of strict incompressibility, which has been shown by various experimental and analytical stud-
ies (e.g., Gent and Lindley, 1959; Koh and Kelly, 1989) to lead to the overestimation of true moduli, in
particular, for ‘‘thin’’ layers.
Fig. 1. Undeformed and deformed configurations of a bonded elastic layer under its three basic deformation modes.
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Assuming strict incompressibility, Gent and Lindley (1959) derived approximate relations for the com-
pression modulus of bonded infinitely long rectangular strips and circular discs. In their theoretical study,
they considered that the total displacement of a bonded rubber layer is composed of the superposition of
two simple displacements; pure homogeneous compression of the corresponding unbonded layer and addi-
tional displacement required to keep the points on the bonded surfaces in their original positions. This
method of treatment, which has been later called the ‘‘pressure method’’, is based on three fundamental
assumptions; (i) plane sections remain plane, (ii) lateral surfaces take a parabolic shape in the deformed
configuration, (iii) normal stress components are all equal to the mean pressure. Gent and Lindley
(1959) also recommended an ‘‘ad-hoc’’ modification to include the effect of bulk compressibility on com-
pression modulus.

Gent and Meinecke (1970) extended the method of Gent and Lindley (1959) to the bonded elastic layers
subject to bending and tabulated compression and bending stiffness factors for layers of various shape.
Using an energy method and including compressibility effects, Lindley (1979a,b) derived closed form
expressions for compression/bending modulus of infinite-strip-shaped bonded layers. Considering the
material compressibility, Chalhoub and Kelly (1990) developed, by the pressure method, a theoretical ap-
proach to derive the compression/bending modulus of circular-shaped layers. This theoretical approach
was later extended to the other geometric shapes (Chalhoub and Kelly, 1991; Constantinou et al., 1992;
Kelly, 1997). Eliminating the stress assumption of the pressure method and using a direct solution formu-
lated by means of either ‘‘mean’’ pressure or ‘‘average’’ horizontal displacements, Tsai and Lee (1998,
1999), Tsai (2003) and Tsai (2005) derived relations for the compression/bending modulus of bonded elastic
layers of various shape. Using the same assumptions but through a variable transformation method, Koh
and Kelly (1989) and Koh and Lim (2001) obtained solutions for the compression modulus of square and
rectangular layers, respectively.

With a similar analytical approach for the derivation of radial and tilting stiffness of cylindrical rubber
bush mountings, Horton et al. (2002a, 2003) derived closed form expressions for displacement/stress distri-
butions and ‘‘apparent Young�s modulus’’ for axially loaded rubber blocks in circular, annular and infinite-
strip shapes. The main feature of the formulation of Horton et al. (2002a, 2003) is that while the assumption
that plane sections remain plane is still kept in the formulation, the commonly used assumption of para-
bolic bulging shape is eliminated, which enabled the authors to investigate the validity of this assumption.
The authors concluded that the shape of the bulging could not be approximated by a parabolic shape for
considerably low shape factors (e.g., S = 0.1 or 0.2). Their results were in good agreement with the exper-
imental results obtained by Mott and Roland (1995), who investigated the uniaxial behavior of very slender
rubber cylinders (with 0.1 < S < 0.3).

The studies conducted to investigate the compressive/bending behavior of bonded elastic layers are
surely not limited only to the analytical studies. Several researchers (e.g., Holownia, 1972; Fenner and
Remzi, 1983; Imbimbo and De Luca, 1998; Yeoh et al., 2002) studied the behavior of bonded elastic layers
using numerical methods, such as, finite element, boundary element or dynamic relaxation methods. Main
advantage of using these methods is that they do not usually include assumptions on neither displacement
nor stress distributions. However, using numerical methods it is generally difficult and unpractical to study
the behavior of bonded layers for various geometrical and material properties. Moreover, these solutions
are also approximate and very sensitive to modelling.

In their common use, bonded elastic layers may also undergo shear deformations as shown in Fig. 1d.
This deformation state is not ‘‘simple shear’’ due to the addition of bending deformations; it is named as
‘‘apparent shear’’ in literature. It is widely accepted that the effect of bonded surfaces to the shear behavior
of the layer is negligible. This is a very realistic assumption for ‘‘thin’’ layers. However, as also stated
by Gent and Meinecke (1970), bending displacements may become an important component of total
displacement when the layer thickness is relatively large or when several thin layers are combined to form
an assembly (e.g., elastomeric bearings). Although many analytical studies have been conducted on
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compressive/bending behavior of bonded elastic layers, there is rather limited work in literature on their
apparent shear behavior. Rivlin and Saunders (1949) studied experimentally the apparent shear behavior
of cylindrical mountings with different geometries. They also suggested an approximate expression for
the apparent shear modulus of bonded elastic layers using an approximate theory developed with the
aid of the similarity of the problem to the problem of a cantilever beam loaded at its free end. Later, Gent
and Meinecke (1970) recognized that Rivlin and Saunders (1949) ignored the effect of bonded surfaces to
bending modulus and they proposed the use of modified bending modulus in Rivlin�s formula. Recently,
Horton et al. (2002b) studied the linear and incompressible behavior of circular-shaped rubber blocks under
combined shear and bending. After obtaining general expressions, they examined three special loading
cases: (a) pure bending, (b) cantilever loading and (c) apparent shear. Their expression for apparent shear
modulus seems to have the same form with the expression proposed by Gent and Meinecke (1970). The
basic difference in these expressions arises from the fact that while Gent and Meinecke�s expression is de-
rived based on parabolic bulging assumption, Horton et al. eliminated this assumption in their formulation.

In this study, a new analytical formulation is presented for the linear and small deformation analysis of
bonded elastic layers under three basic deformation modes: uniform compression, pure bending and appar-
ent shear. This new analytical treatment is formulated by using an approximate theory developed by Mengi
(1980) using a modified version of the Galerkin method. As indicated by Papoulia and Kelly (1996), var-
iational approaches, such as, the principle of minimum potential energy can also be used in the analysis of
bonded layers. However, these approaches usually necessitate the selection of the form of displacement
functions in advance to satisfy the displacement boundary conditions. Thus, their success generally depends
on how well the behavior is guessed at the beginning. The approximate theory used in this study overcomes
this difficulty; inclusion of the displacement boundary conditions in the formulation itself eliminates any
possible inconsistency between the assumed displacement field and the boundary conditions at the bonded
surfaces. How close to the exact solution is governed by the order of the theory. For this reason, for each
deformation mode, the order of the theory is first left arbitrary and the relevant equations are presented in
general forms, in view of displacement boundary conditions at the top and bottom faces of the layer. The
constants which appear in the approximate theory are determined and tabulated by choosing the distribu-
tion functions employed in the theory as Legendre polynomials. Then, the application of the formulation is
exemplified for each mode by solving the governing equations for a bonded layer of infinite-strip shape
using zeroth and/or first order theories. Finally, for bonded strip layer, closed form expressions for dis-
placement/stress distributions and for three effective moduli (compression, bending and apparent shear
moduli) are presented, and the effects of shape factor (the ratio of one bonded area to bulge-to-free area)
and Poisson�s ratio on the layer behavior is studied.
2. Review of the approximate theory used in the study

In the present study, we employ an approximate theory proposed by Mengi (1980) for the dynamic
behavior of the thermoelastic plates. The theory, developed by using a modified version of the Galerkin
Method, assumes that the material is isotropic and linearly elastic and that the layer has a uniform thick-
ness of 2h. A Cartesian coordinate system (x1 x2 x3) is defined at the mid-plane of the layer such that x2 axis
is perpendicular to the mid-plane (Fig. 1a). The approximate theory contains two types of field variables:
‘‘generalized variables’’ representing the weighted averages of displacements and stresses over the thickness
of the layer, ‘‘face variables’’ representing the components of displacements and tractions on the lateral
faces of the layer. The inclusion of face variables as field variables in theory eliminates any inconsistency
which may exist between displacement distributions assumed over the thickness of the layer and boundary
conditions on its flat faces. The theory due to Mengi (1980) differs in this respect from others available in
literature.
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In the development of the theory, a set of ‘‘distribution functions’’ f/nð�x2Þ; n ¼ 0; 1; 2; . . . ;�x2 ¼ x2=hg is
chosen. The elements /n (n = 0,1, . . .,m + 1,m + 2) are retained in the set for mth order theory. Keeping the
last two elements /m + 1 and /m + 2 in the set is essential for establishing the constitutive equations for face
variables. The theory is composed of two sets of equations. The first set is derived by taking the weighted
averages of elasticity equations with the use of /n (n = 0–m) as weighting functions. The second set of equa-
tions representing the ‘‘constitutive equations for face variables’’ is obtained through the expansion of dis-
placements in terms of the distribution functions /n (n = 0–m + 2) and using them in the exact constitutive
equations of tractions on flat faces of the layer. With this procedure, the governing equations of the approx-
imate theory are obtained in terms of some constants whose values can be computed once the distribution
functions are selected.

In the present study, the approximate theory will be applied first in general terms to the formulation of
some static deformation modes of a bonded elastic layer having arbitrary shape in horizontal plane; then, it
will be used to obtain analytical expressions when the bonded layer is of strip shape (which involves 2D
plane strain analysis). The extension of the analyses to other shapes (such as, square, rectangular, circular
cylindrical layers) will be considered in a forthcoming paper (which involves 3D analysis). For this reason,
to be used in both 2D and 3D analyses, in what follows the equations of the approximate theory are sum-
marized for 3D case (for more details, see Mengi (1980)).

Written in indicial notation, the fundamental equations of linear elasticity, equilibrium (in the absence of
body forces) and constitutive equations, are
ojsji ¼ 0 ði; j ¼ 1–3Þ ð1Þ
sij ¼ lðoiuj þ ojuiÞ þ dijkokuk ði; j ¼ 1–3Þ ð2Þ
where k and l are Lamé�s constants; ui is displacement component; sij is stress component; and dij is the
Kronecker delta. In writing Eqs. (1) and (2), the summation convention is used, where any repeated index
indicates summation over its range. Moreover, oi implies partial differentiation with respect to xi.

The weighted averages of fundamental equations are established by applying the operator
Ln ¼ 1

2h

Rþh
�h ð�Þ/n dx2 with n = 0–m to Eqs. (1) and (2), which gives
o1s
n
1i þ o3s

n
3i þ ðRn

i � �sn
2iÞ ¼ 0 ðn ¼ 0–mÞ ð3Þ
where
Rn
i ¼

bRn

i /nð1Þ
2h

where bRn

i ¼
R�i ¼ sþ2i � s�2i for even n

Rþi ¼ sþ2i þ s�2i for odd n

�
with s�2i ¼ s2ijx2¼�h ð4Þ

�sn
2i ¼ L

n
s2i with L

n ¼ 1

2h

Z h

�h
ð�Þ d/n

dx2

dx2 ð5Þ
and
sn
11 ¼ ð2lþ kÞo1un

1 þ ko3un
3 þ kðSn

2 � �un
2Þ

sn
22 ¼ kðo1un

1 þ o3un
3Þ þ ð2lþ kÞðSn

2 � �un
2Þ

sn
33 ¼ ð2lþ kÞo3un

3 þ ko1un
1 þ kðSn

2 � �un
2Þ

sn
12 ¼ lo1un

2 þ lðSn
1 � �un

1Þ

sn
13 ¼ lo1un

3 þ lo3un
1

sn
23 ¼ lo3un

2 þ lðSn
3 � �un

3Þ ðn ¼ 0–mÞ

ð6Þ



4276 S. Pinarbasi et al. / International Journal of Solids and Structures 43 (2006) 4271–4296
where
Sn
i ¼

bS n

i /nð1Þ
2h

where bSn

i ¼
S�i ¼ uþi � u�i for even n

Sþi ¼ uþi þ u�i for odd n

(
with u�i ¼ uijx2¼�h

�un
i ¼ L

n
ui

ð7Þ
In the derivation of Eqs. (3)–(7), it is assumed that /n is even function of �x2 for even n and odd function of
�x2 for odd n. Also, it may be assumed without loss of generality that /0n ¼

d/n
d�x2

is related to /j by

/0n ¼
Pm

j¼0cnj/j, implying that �sn
2i and �un

i are related to sn
2i and un

i by Eq. (8) in which the constants cnj

may be computed whenever the distribution functions are selected.
ð�sn
2i; �u

n
i Þ ¼

1

h

Xm

j¼0

cnjðsj
2i; u

j
iÞ ð8Þ
For the derivation of the constitutive equations for face variables R�i , displacements ui are expanded in
terms of /k (k = 0,1,2, . . .,m + 2) as
ui ¼
Xmþ2

k¼0

ai
k/k ð9Þ
where ai
k are some coefficients which are functions of x1 and x3. It is to be noted that Eq. (9) is not an

assumption for the shape of displacements ui over the thickness of the layer; it is the representation of ui

in terms of complete shape (base) functions /i, in fact, this representation would be exact for m!1. When
Ln (n = 0–m) operator is applied to this expression, one obtains
un
i ¼

Xmþ2

k¼0

dnkai
k where dnk ¼ Ln/k ¼

1

2h

Z h

�h
/n/k dx2 ð10Þ
Assumed properties of /k lead to the following uncoupled system of equations for the determination of
coefficients ai

k:
un
i ¼

Xpþ2

k¼0;2

dnkai
k and

Sþi
2
¼
Xpþ2

k¼0;2

ai
k/kð1Þ ðn ¼ 0; 2; . . . ; pÞ for even k

un
i ¼

Xp0þ2

k¼1;3
dnkai

k and
S�i
2
¼
Xp0þ2

k¼1;3

ai
k/kð1Þ ðn ¼ 1; 3; . . . ; p0Þ for odd k

ð11Þ
where p = m and p 0 = m � 1 for even m and p = m � 1 and p 0 = m for odd m. From the solutions of above
equations, the coefficients ai

k are determined in terms of un
i and S�i as
ai
k ¼

Xp

j¼0;2

fkju
j
i þ fk;pþ2Sþi for even k and ai

k ¼
Xp0

j¼1;3

fkju
j
i þ fk;p0þ2S�i for odd k ð12Þ
where the coefficients fkj (k, j = 0–m + 2) may be computed whenever /n are chosen.
Finally, to obtain the constitutive equations for face variables, one should use Eq. (9) in R�i ¼ sþ2i � s�2i

with s2i = l(o2ui + oiu2) + kdi2okuk, which gives
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Rþ1 ¼ lðo1Sþ2 Þ þ
2l
h

Xp0

k¼1;3

ckuk
1 þ c�S�1

 !

R�1 ¼ lðo1S�2 Þ þ
2l
h

Xp

k¼0;2

ckuk
1 þ cþSþ1

 !

Rþ2 ¼ kðo1Sþ1 þ o3Sþ3 Þ þ
2ð2lþ kÞ

h

Xp0

k¼1;3

ckuk
2 þ c�S�2

 !

R�2 ¼ kðo1S�1 þ o3S�3 Þ þ
2ð2lþ kÞ

h

Xp

k¼0;2

ckuk
2 þ cþSþ2

 !

Rþ3 ¼ lðo3Sþ2 Þ þ
2l
h

Xp0

k¼1;3

ckuk
3 þ c�S�3

 !

R�3 ¼ lðo3S�2 Þ þ
2l
h

Xp

k¼0;2

ckuk
3 þ cþSþ3

 !

ð13Þ
where
cj ¼
Xp0þ2

k¼1;3

fkj/
0
kð1Þ for j ¼ 1; 3; . . . ; p0 and cj ¼

Xpþ2

k¼0;2

fkj/
0
kð1Þ for j ¼ 0; 2; . . . ; p

c� ¼
Xp0þ2

k¼1;3

fk;p0þ2/
0
kð1Þ; cþ ¼

Xpþ2

k¼0;2

fk;pþ2/
0
kð1Þ

ð14Þ
In the approximate theory, the weighted forms of the equilibrium equations [3(m + 1) equations] and
constitutive equations [6(m + 1) equations] provide [9(m + 1)] equations. In addition, six equations come
from the boundary conditions at the top and bottom faces of the layer. These boundary conditions specify
one of the traction or displacement components, or their combination, in each direction on each face of the
layer. On the other hand, the constitutive equations for face variables provide six more equations. Thus, the
number of available equations in the approximate theory is [9(m + 1) + 12], which is sufficient to compute
the unknowns ðsn

ij; u
n
i ; S

�
i ;R

�
i Þ, whose number is also [9(m + 1) + 12].
3. Application of the approximate theory to bonded elastic layers

Fig. 1a shows the undeformed configuration of an elastic layer of uniform thickness t bonded to rigid
plates at its top and bottom faces. The deformed configurations of the layer under three fundamental defor-
mation modes are shown in Fig. 1b–d. In the first deformation mode (Fig. 1b), the layer is compressed uni-
formly by a uniaxial compressive force P such that the bonded faces approach uniformly towards each
other with a relative vertical displacement D. In the second deformation mode (Fig. 1c), the layer is purely
bended by bending moments M so that the bonded faces rotate with respect to each other about x3 axis
with a relative angle of rotation /. Finally, in the third mode (Fig. 1d), the bonded layer is subjected to
the combined effects of shearing force F and bending moments M = tF/2 so that the bonded faces move
with respect to each other in horizontal direction with a relative horizontal displacement d. The object is
to formulate and analyze each problem within the framework of the approximate theory presented in
the previous section. In the analyses, the layer will be referred to the same rectangular frame employed
in the approximate theory. In the derivations and results presented in subsequent sections, the distribution



Table 2
Coefficients ai

k and constants cj, c± for the 0th, 1st and 2nd order theories (/n�s are Legendre polynomials)

m ai
k (k = 0�m + 2) cj(j = 0�m) c+ c�

0 u0
i

S�i =2
Sþi =2� u0

i

24 35 {�3} 3/2 1/2

1

u0
i

3u1
i

Sþi =2� u0
i

S�i =2� 3u1
i

2664
3775 �3

�15

� �
3/2 3

2

u0
i

3u1
i

5u2
i

S�i =2� 3u1
i

Sþi =2� 5u2
i � u0

i

266664
377775

�10
�15
�35

8<:
9=; 5 3

Table 1
cnj coefficients (/n�s are Legendre polynomials)

n j

0 1 2 3 4

0 0 0 0 0 0
1 1 0 0 0 0
2 0 3 0 0 0
3 1 0 5 0 0
4 0 3 0 7 0
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functions in the approximate theory are chosen as Legendre polynomials of the first kind. The coefficients
cnj, ai

k, cj and c± of the theory for these distribution functions are listed in Tables 1 and 2. It is worth to be
noted that any distribution functions /n may be chosen in the approximate theory as long as they form a
complete set implying that the prediction of the approximate theory approaches the actual response as the
number of terms in the set {/n} increases. Legendre polynomials, Pn(x2), selected as distribution functions
in the present study, are orthogonal implying that the completeness of the set {/n} is satisfied automatically
with this choice of {/n}; besides, the orthogonality of Pn facilitates the computations of constants appear-
ing in the approximate theory.

3.1. Derivation of reduced governing equations

3.1.1. Uniform compression

From the deformed configuration of a concentrically compressed elastic layer shown in Fig. 1b, it is clear
that the vertical displacement component u2 is antisymmetric whereas the horizontal displacement compo-
nents u1 and u3 are symmetric about the mid-plane of the layer. Since the distribution functions, are even
functions of �x2 for even n, and odd functions of �x2 for odd n, one has
un
1 ¼ un

3 ¼ 0 and �un
2 ¼ 0 for odd n

�un
1 ¼ �un

3 ¼ 0 and un
2 ¼ 0 for even n

ð15Þ
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Furthermore, since the elastic layer is bonded at its top and bottom face, the material points at the
bonded faces can only displace uniformly in the axial direction; this implies that
u�1 ¼ u�3 ¼ 0 and u�2 ¼ u2jx2¼�h ¼ �
D
2

ð16Þ
which leads to
S�1 ¼ S�3 ¼ Sþ2 ¼ 0 and S�2 ¼ �D ð17Þ

from which it is obvious that
Sn
1 ¼ Sn

3 ¼ 0 for all n; Sn
2 ¼

�D=t for even n

0 for odd n

�
ðo1Sn

i ; o3Sn
i Þ ¼ 0 for i ¼ 1–3 for all n

ð18Þ
Then, the constitutive equations for face variables and the weighted form of constitutive equations have
the following uncoupled forms:

• constitutive equations for face variables:
Rn
i ¼

4l
t2

Xp

k¼0;2

ckuk
i

 !
ði ¼ 1; 3Þ for even n; Rn

2 ¼
4a
t2

Xp0

k¼1;3

ckuk
2 � Dc�

 !
for odd n ð19Þ
• weighted constitutive equations:
sn
11 ¼ ao1un

1 þ ko3un
3 �

kD
t
� k�un

2

sn
22 ¼ ko1un

1 þ ko3un
3 �

aD
t
� a�un

2

sn
33 ¼ ko1un

1 þ ao3un
3 �

kD
t
� k�un

2

sn
13 ¼ lo1un

3 þ lo3un
1

9>>>>>>>>=>>>>>>>>;
for even n

sn
12 ¼ lo1un

2 � l�un
1

sn
23 ¼ lo3un

2 � l�un
3

�
for odd n

ð20Þ
where a = 2l + k, and other Rn
i and sn

ij being zero.

Substitution of Eqs. (19) and (20) into Eq. (3) gives the following governing equations for weighted dis-
placements un

i :
ao11un
1 þ lo33un

1 þ ðkþ lÞo13un
3 � ko1�un

2 þ
4l
t2

Xp

k¼0;2

ckuk
1

 !
¼ �sn

21

ao33un
3 þ lo11un

3 þ ðkþ lÞo13un
1 � ko3�un

2 þ
4l
t2

Xp

k¼0;2

ckuk
3

 !
¼ �sn

23

9>>>>>=>>>>>;
for even n

lo11un
2 þ lo33un

2 � lo1�un
1 � lo3�un

3 þ
4a
t2

Xp0

k¼1;3

ckuk
2

 !
� 4a

t2
Dc� ¼ �sn

22 for odd n

ð21Þ
where �un
i and �sn

2i are related to un
i and sn

2i by, in view of Eq. (8),
ð�un
i ;�s

n
2iÞ ¼

2

t

Xm

j¼0

cnjðuj
i ; s

j
2iÞ ð22Þ
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in which sj
2i can be expressed in terms of un

i by Eqs. (20). Eqs. (21) with Eqs. (20) and (22) comprise the
reduced governing equations for the problem of uniform compression of bonded elastic layers.

3.1.2. Pure bending

Similar to the uniform compression case, under pure bending, the vertical displacement u2 is antisymmet-
ric while the horizontal displacements u1 and u3 are symmetric about the mid-plane of the layer (Fig. 1c).
Therefore, Eqs. (15) are valid also for the bending problem, for which the displacement boundary condi-
tions at the bonded faces of the layer are
u�1 ¼ u�3 ¼ 0 and u�2 ¼ u2jx2¼�h ¼ �
/
2

x1 ð23Þ
which leads to
S�1 ¼ S�3 ¼ Sþ2 ¼ 0 and S�2 ¼ /x1 ð24Þ

Then,
Sn
1 ¼ Sn

3 ¼ 0 for all n; Sn
2 ¼

/x1=t for even n

0 for odd n

�
ð25Þ
Substituting Eqs. (15), (24) and (25) into the governing equations of the theory and following the same
procedure described in Section 3.1.1, one can obtain the reduced form of the governing equations for this
bending problem as

• weighted equilibrium equations:
ao11un
1 þ lo33un

1 þ ðkþ lÞo13un
3 � ko1�un

2 þ
4l
t2

Xp

k¼0;2

ckuk
1

 !
þ ðkþ lÞ/

t
¼ �sn

21

ao33un
3 þ lo11un

3 þ ðkþ lÞo13un
1 � ko3�un

2 þ
4l
t2

Xp

k¼0;2

ckuk
3

 !
þ l

/
t
¼ �sn

23

9>>>>=>>>>; for even n

lo11un
2 þ lo33un

2 � lo1�un
1 � lo3�un

3 þ
4a
t2

Xp0

k¼1;3

ckuk
2

 !
þ 4a

t2
c�/x1 ¼ �sn

22 for odd n

ð26Þ
• weighted constitutive equations:
sn
11 ¼ ao1un

1 þ ko3un
3 þ

k/
t

x1 � k�un
2

sn
22 ¼ ko1un

1 þ ko3un
3 þ

a/
t

x1 � a�un
2

sn
33 ¼ ko1un

1 þ ao3un
3 þ

k/
t

x1 � k�un
2

sn
13 ¼ lo1un

3 þ lo3un
1

9>>>>>>>=>>>>>>>;
for even n

sn
12 ¼ lo1un

2 � l�un
1

sn
23 ¼ lo3un

2 � l�un
3

�
for odd n

ð27Þ
In Eqs. (26), �un
i and �sn

2i are related to un
i and sn

2i by Eq. (22) and sj
2i can be expressed in terms of un

i by Eqs.
(27).
3.1.3. Apparent shear
Apparent shear of the layer shown in Fig. 1a results in the deformed shape shown in Fig. 1d, from which

it is obvious that the boundary conditions at the bonded faces are
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u�1 ¼ u1jx2¼�h ¼ �
d
2

and u�2 ¼ u�3 ¼ 0 ð28Þ
Then,
Sþ1 ¼ S�2 ¼ S�3 ¼ 0 and S�1 ¼ d

Sn
2 ¼ Sn

3 ¼ 0 for all n; Sn
1 ¼

d=t for even n

0 for odd n

� ð29Þ
Contrary to the compression and bending cases, under apparent shear, the vertical displacement u2 is
symmetric whereas the horizontal displacements u1 and u3 are antisymmetric about the mid-plane of the
layer. That is,
un
1 ¼ un

3 ¼ 0 and �un
2 ¼ 0 for even n

�un
1 ¼ �un

3 ¼ 0 and un
2 ¼ 0 for odd n

ð30Þ
Following the same procedure employed in Section 3.1.1, the governing equations for the apparent shear
problem may be obtained as

• weighted form of equilibrium equations:
ao11un
1 þ lo33un

1 þ ðkþ lÞo13un
3 � ko1�un

2 þ
4l
t2

Xp0

k¼1;3

ckuk
1

 !
þ 4l

t2
dc� ¼ �sn

21

ao33un
3 þ lo11un

3 þ ðkþ lÞo13un
1 � ko3�un

2 þ
4l
t2

Xp0

k¼1;3

ckuk
3

 !
¼ �sn

23

9>>>>>=>>>>>;
for odd n

lo11un
2 þ lo33un

2 � lo1�un
1 � lo3�un

3 þ
4a
t2

Xp

k¼0;2

ckuk
2

 !
¼ �sn

22 for even n

ð31Þ
• weighted form of constitutive equations:
sn
11 ¼ ao1un

1 þ ko3un
3 � k�un

2

sn
22 ¼ ko1un

1 þ ko3un
3 � a�un

2

sn
33 ¼ ko1un

1 þ ao3un
3 � k�un

2

sn
13 ¼ lo1un

3 þ lo3un
1

9>>>=>>>; for even n

sn
12 ¼ lo1un

2 � l�un
1 þ l d

t

sn
23 ¼ lo3un

2 � l�un
3

)
for odd n

ð32Þ
In Eq. (31), �un
i and �sn

2i are related to un
i and sn

2i by Eq. (22) and sj
2i can be expressed in terms of un

i by Eqs.
(32).

3.2. Determination of displacement/stress distributions

Eqs. (21), (26) and (31) constitute three sets of partial differential equations for weighted displacements
un

i , governing the behavior of a bonded elastic layer under its three basic deformation modes. Necessary
boundary conditions for the solution of these differential equations are the traction-free boundary condi-
tions at the lateral bulge-free surfaces. Once the governing equations are solved for un

i subject to these
boundary conditions, determination of displacements, stress distributions or any other parameter, such
as, stiffness of the bonded layer is straightforward.
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For various orders of the theory, the distributions of displacements ui(i = 1–3) may be computed in
terms of un

i and S�i as, in view of the coefficients in Table 2 and of Eq. (9),
ui ¼ u0
i þ

S�i
2

� �
2x2

t

� �
þ Sþi

2
� u0

i

� �
6x2

2

t2
� 1

2

� �
for m ¼ 0

ui ¼ u0
i þ ð3u1

i Þ
2x2

t

� �
þ Sþi

2
� u0

i

� �
6x2

2

t2
� 1

2

� �
þ S�i

2
� 3u1

i

� �
20x3

2

t3
� 3x2

t

� �
for m ¼ 1

ui ¼
u0

i þ ð3u1
i Þ

2x2

t

� �
þ ð5u2

i Þ
6x2

2

t2
� 1

2

� �
þ S�i

2
� 3u1

i

� �
20x3

2

t3
� 3x2

t

� �

þ Sþi
2
� u0

i � 5u2
i

� �
70x4

2

t4
� 15x2

2

t2
þ 3

8

� �
8>>><>>>:

9>>>=>>>; for m ¼ 2

ð33Þ
Substitution of these displacements into Eq. (2) determines the stress distributions.

3.3. Compression, bending and apparent shear moduli

The effective modulus of the layer under its any deformation state may be determined whenever the
stress distributions are determined. Effective compression modulus Ec of a bonded elastic layer can be
obtained from the ratio of nominal compressive stress, defined as the ratio of applied axial load P to the
undeformed horizontal sectional area A of the layer, to nominal compressive strain, defined as the ratio
of total compression of the layer, D, to its initial thickness. Thus, for the effective compression modulus
Ec, one has
Ec ¼
P

Aec

where ec ¼
D
t

ð34Þ
Similarly, the effective bending modulus of the layer Eb can be determined from the ratio of bending stiff-
ness Kb, defined as the ratio of the applied moment M to the resultant curvature j, to the moment of inertia
I of the layer about the axis of rotation. Thus, the effective bending modulus Eb is given by
Eb ¼
Kb

I
where Kb ¼

M
j

with j ¼ /
t

ð35Þ
Determination of apparent shear modulus la of the layer is very similar to that of compression modulus.
It is simply the ratio of nominal shear stress s to nominal shear strain c, that is,
la ¼
s
c

where s ¼ F
A

and c ¼ d
t

ð36Þ
For any deformation state, applied load can be computed by integrating the related face stress s�2i over
the horizontal section of the layer. Similarly, applied moment can be determined by integrating, over hor-
izontal area, the moment of the related face stress about centroidal axis. Since the zeroth order theory cor-
responds to the averaging of the variables through the layer thickness, s0

2i, instead of s�2i, should be used in
the calculation of forces/moments for this order. Thus, the compressive force P, bending moment M and
shear force F in Eqs. (34)–(36) may be obtained from
ðP ;M ; F Þ ¼
Z Z

A
ð�s0

22; s
0
22x1; s

0
12ÞdA for m ¼ 0

ðP ;M ; F Þ ¼
Z Z

A
ð�s�22; s

�
22x1; s

�
12ÞdA for m ¼ 1; 2; . . .

ð37Þ
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where, in view of that R�2 ¼ sþ22 � s�22 ¼ 0 for uniform compression and pure bending problems, and
R�1 ¼ sþ12 � s�12 ¼ 0 and Rþ2 ¼ sþ22 þ s�22 ¼ 0 for apparent shear problem,
s�22 ¼
2a
t

Xp0

k¼1;3

ckuk
2

 !
þ 2a

t
c�b where b ¼

�D for uniform compression

/x1 for pure bending

�

sþ22 ¼ �s�22 ¼
2a
t

Xp

k¼0;2

ckuk
2

 !

s�12 ¼
2l
t

Xp0

k¼1;3

ckuk
1

 !
þ 2l

t
c�d

9>>>>>=>>>>>;
for apparent shear

ð38Þ
4. Application of the formulation to the infinite-strip-shaped bonded elastic layers

Above three sets of governing equations corresponding to three fundamental deformation states are de-
rived for a bonded elastic layer of any arbitrary shape. The formulation can easily be applied to a layer of
any shape to analyze its behavior under its basic deformation modes. The solutions obtained for each mode
can surely be superposed to analyze the effect of bonded surfaces on more complex behavior of the layer
under combined loadings.

In this study, the formulation presented in the previous section is applied to infinite-strip-shaped bonded
layers. For each deformation mode, governing equations are solved for displacements, from which closed
form expressions for stress distributions and relevant modulus are derived.

In the analysis presented in the following sections, it is assumed that the length of the bonded rectangular
layer is much larger than its width 2w and thickness t. It is clear that this layer may be approximated by an
infinite-strip-shaped bonded layer in a state of plane strain. When the centerline of the strip is taken to coin-
cide with x3 axis, one has u3 = 0. Moreover, the nonzero displacements are independent of x3; i.e.,
u1 = u1(x1,x2),u2 = u2(x1,x2). Only the compression problem is solved by using both zeroth and first order
theories. After showing that zeroth order theory indeed results in the same solutions obtained in literature
by the formulations which ‘‘average’’ the variables through the layer thickness, the bending and apparent
shear problems are solved by using only the first order theory.

4.1. Solutions of governing equations

4.1.1. Uniform compression

4.1.1.1. Solution for zeroth order theory. For the zeroth order theory (m = 0, p = 0 and p 0 = �1), the
weighted equilibrium equation in x2 direction (third of Eqs. (21)) is trivially satisfied. In view of Eq. (22)
and Tables 1, 2 for m = 0, the weighted form of the equilibrium equation in x1 direction (first of Eq.
(21)) becomes
o11u0
1 � b2

10u0
1 ¼ 0 with b2

10 ¼
12l
at2

ð39Þ
Since u1 is antisymmetric about x1 = 0, the solution of Eq. (39) for u0
1 is
u0
1 ¼ a10 sinhðb10x1Þ ð40Þ
where a10 is an integration constant which can be determined from the traction-free boundary conditions
s0

12jx1¼�w ¼ 0 and s0
11jx1¼�w ¼ 0 at the lateral boundary. While the first condition is trivially satisfied, the sec-

ond condition requires
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½o1u0
1�x1¼�w ¼

kD
at

ð41Þ
which leads to
a10 ¼
k
a

D
t

1

b10 coshðb10wÞ ð42Þ
Then, the displacements ui(i = 1,2) and the effective compression modulus Ec can be computed from the
first of Eqs. (33) and (34) as, in view of Eqs. (37) and (38),
u1 ¼
3

2

D
t

k
a

sinhðb10x1Þ
b10 coshðb10wÞ 1� 4x2

2

t2

� �
; u2 ¼ �

D
t

x2

Ec ¼ a� k2

a
tanhðb10wÞ
ðb10wÞ

ð43Þ
It is noteworthy that the effect of compressibility is naturally included in the formulation. The above
expressions clearly indicate that the zeroth order theory, which is the lowest order theory, simply corre-
sponds to the averaging the field variables and equations over the layer thickness. Therefore, for compres-
sive stiffness, it gives the same expression obtained by Tsai and Lee (1998). The selection of polynomial
functions as distribution functions leads to a parabolic bulging shape in zeroth order theory. However,
it may be noted that when the order of the theory is increased, the bulging shape will no longer be parabolic
and, in fact, approaches the actual shape as dictated by the approximate theory.

4.1.1.2. Solution for first order theory. In the first order theory (m = 1, p = 0 and p 0 = 1), the governing
equations should be analyzed both for n = 0 and n = 1, separately. It may be seen that, for n = 0, the gov-
erning equations for the first order theory are identical to those derived from the zeroth order theory. That
is, the expression obtained for u0

1 remains unchanged and Eqs. (40) and (42) are still valid. Considering Eq.
(22) and Tables 1 and 2 for the first order theory and recalling from the zeroth order theory that
s0
22 ¼ ko1u0

1 �
aD
t

ð44Þ
the additional variable u1
2 can be obtained from the solution of nontrivial equilibrium equation in x2 direc-

tion for n = 1 (third of Eq. (21)), that is, from
l o11u1
2 �

60a
lt2

u1
2

� �
� 2

t
ðkþ lÞðo1u0

1Þ �
10aD
lt2
¼ 0 ð45Þ
Necessary boundary condition for the solution of the above differential equation comes from the non-
trivial boundary condition that s1

12jx1¼�w ¼ 0, which yields
½o1u1
2�x1¼�w ¼

2

t
½u0

1�x1¼�w ð46Þ
Substituting Eqs. (40) and (42) into Eqs. (45) and (46), one gets the following governing equation and
boundary condition for u1

2:
o11u1
2 � b2

21u1
2 ¼

2

t
kþ l

l
k
a

D
t

coshðb10x1Þ
coshðb10wÞ þ

10aD
lt2

ð47Þ
with
½o1u1
2�x1¼�w ¼ �

2

t
k
a

D
t

tanhðb10wÞ
b10

ð48Þ
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where
b2
10 ¼

12l
at2

; b2
21 ¼

60a
lt2

ð49Þ
The solution of Eq. (47) for u1
2 subject to the boundary condition in Eq. (48) is
u1
2 ¼ a21 coshðb21x1Þ þ

2

t
lþ k

l
k
a

D
t

1

b2
10 � b2

21

coshðb10x1Þ
coshðb10wÞ �

D
6

ð50Þ
where the integration constant a21 is given by
a21 ¼
2

t
k
a

D
t

1

b10b21

tanhðb10wÞ
sinhðb21wÞ 1� lþ k

l
b2

10

b2
10 � b2

21

" #
ð51Þ
Then, the displacement distributions and effective compression modulus can be obtained through the use of
the second of Eqs. (33) and Eq. (34) as, in view of the second of Eqs. (37) and first of Eqs. (38),
u1 ¼
3

2

D
t

k
a

sinhðb10x1Þ
b10 coshðb10wÞ 1� 4x2

2

t2

� �

u2 ¼
30

t
k
a

D
t

1

b10b21

tanhðb10wÞ
sinhðb21wÞ 1� lþ k

l
b2

10

b2
10 � b2

21

" #
coshðb21x1Þ

þ lþ k
l

1

b2
10 � b2

21

coshðb10x1Þ
coshðb10wÞ

8>>>><>>>>:

9>>>>=>>>>;
x2

t
1� 4x2

2

t2

� �

� D
t x2

266666664

377777775
Ec ¼ a� k2

a
tanhðb10wÞ
ðb10wÞ

ð52Þ
When the solutions in Eqs. (52) obtained by the first order theory are compared with those derived from
the zeroth order theory (Eq. (43)), it may be seen that increasing the order of the theory from zero to one
eliminates the common assumption used in literature, namely, plane horizontal section remains plane dur-
ing deformation. On the other hand, parabolic bulging assumption is still included in the resulting expres-
sions. At this stage, it is valuable to check the validity of these two commonly used assumptions by
comparing the analytical predictions of the first order theory (FOT) with the results of the boundary
element method (BEM).

Fig. 2a and b compare the predictions of analytical solutions (plotted in continuous lines) with BEM
results (plotted as discrete points) for a shape factor of S = 5.0. Displacement distributions are plotted
for four different values of Poisson�s ratio; 0.3, 0.45, 0.49 and 0.499, so that the effect of compressibility
on the layer behavior can also be studied. Since both over the bonded faces and at the central plane, plane
sections remain plane, it is quite reasonable to investigate the axial displacement distribution along the
width of the layer at the level of quarter thickness (i.e., at x2 = ± t/4). It is noticeable that while the assump-
tion that plane sections remain plane seems to be somewhat reasonable for highly compressible (m = 0.3)
materials, for materials with larger Poisson�s ratio, this assumption is not valid as shown in Fig. 2a. The
agreement between the analytical solutions and BEM results is very good for all studied values of Poisson�s
ratio. On the other hand, the parabolic bulging assumption can be accepted as a very realistic assumption as
shown in Fig. 2b unless shape factor is too low.

It is to be noted that the use of zeroth and first order theories seems to be suitable for shape factors
S P 1.0, where the bulging shape is known to be approximately parabolic. For very low shape factors
(S� 1.0), where the bulging pattern is no longer parabolic, the order of the approximate theory should
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Fig. 2. Assessment of validity of two basic assumptions through the comparison of FOT (continuous lines) and BEM (discrete points)
predictions for S = 5.
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be increased. It is obvious that the increase of the order of the theory to two will release the kinematic
assumption made in literature on bulging pattern. However, it may be noted that the governing equations
of the second order theory (not presented in this study) are more complex and coupled, which seems to
cause difficulties in the derivation of closed form solutions. This will be the subject of a later study.

4.1.2. Pure bending

For bending problem, in view of Eqs. (15) and (26), the first order theory has two nontrivial equations
for two unknown weighted displacements, u0

1 and u1
2. The first equation comes from the first of Eqs. (26)

with n = 0, which reduces to the following governing equation for u0
1, in view of Eq. (22) and Tables 1

and 2 for m = 1,
o11u0
1 � b2

10u0
1 ¼ �

kþ l
a

/
t

where b2
10 ¼

12l
at2

ð53Þ
Necessary boundary condition for the solution of Eq. (53) for u0
1 is: s0

11jx1¼�w ¼ 0, which requires
½o1u0
1�x1¼�w ¼ �

k
a

/
t
ð�wÞ ð54Þ
Then, one has, for u0
1,
u0
1 ¼ �

k
a

/
t

w coshðb10x1Þ
b10 sinhðb10wÞ þ

lþ k
12l

/t ð55Þ
The second equation for u1
2 comes from the third of Eqs. (26) for n = 1. Considering Eq. (22) and Tables

1 and 2 for m = 1, the second of Eqs. (27) for n = 0, and Eq. (55) for u0
1, the equation for u1

2 reduces to
o11u1
2 � b2

21u1
2 ¼ �

2

t
kþ l

l
k
a

/
t

w sinhðb10x1Þ
sinhðb10wÞ �

10a
lt2

/x1 with b2
21 ¼

60a
lt2

ð56Þ
Nontrivial boundary condition at the lateral sides: s1
12jx1¼�w ¼ 0 yields
½o1u1
2�x1¼�w ¼ �

2

t
k
a

/
t

w
b10 tanhðb10wÞ þ

lþ k
6l

/ ð57Þ
Using this boundary condition, u1
2 may be determined as
u1
2 ¼ a22 sinhðb21x1Þ �

2

t
lþ k

l
k
a

/
t

1

b2
10 � b2

21

w sinhðb10x1Þ
sinhðb10wÞ þ

/
6

x1 ð58Þ
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where the integration constant a22 is given by
a22 ¼ �
2

t
k
a

/
t

w
b10b21

cothðb10wÞ
coshðb21wÞ 1� lþ k

l
b2

10

b2
10 � b2

21

" #
þ /

6

k
l

1

b21 coshðb21wÞ ð59Þ
Then, the displacement components ui and effective bending modulus Eb may be obtained from the second
of Eqs. (33) and Eq. (35) as, in view of the second of Eqs. (37) and first of Eqs. (38),
u1 ¼ � 3

2

k
a

/
t

w coshðb10x1Þ
b10 sinhðb10wÞ þ

lþ k
8l

/t
� �

1� 4x2
2

t2

� �

u2 ¼

� 30

t
k
a

/
t

w
b10b21

cothðb10wÞ
coshðb21wÞ 1� lþ k

l
b2

10

b2
10 � b2

21

" #
sinhðb21x1Þ

þ 5/
2

k
l

sinhðb21x1Þ
b21 coshðb21wÞ �

30

t
k
a

/
t

lþ k
l

w

b2
10 � b2

21

sinhðb10x1Þ
sinhðb10wÞ

0BBBBB@

1CCCCCA
x2

t
1� 4x2

2

t2

� �

�/
t

x1x2

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;

Eb ¼ a� 15ka
l

lþ k
l

b2
10

b2
10 � b2

21

1

ðb10wÞ2
1� b10w

tanhðb10wÞ

� �
þ

1

ðb21wÞ2
b10w

tanhðb10wÞ 1� tanhðb21wÞ
b21w

� �
266664

377775þ
1

ðb21wÞ2
1� b10w

tanhðb10wÞ

� �
1� tanhðb21wÞ

b21w

� �

8>>>>>>>>>><>>>>>>>>>>:

9>>>>>>>>>>=>>>>>>>>>>;

ð60Þ
4.1.3. Apparent shear

When the first order theory is applied to the apparent shear problem, one has, in view of Eq. (30), two
unknown weighted displacements; u0

2 and u1
1. The governing equation for u0

2 comes from the third of Eqs.
(31) for n = 0, which, in view of Eq. (22) and Tables 1 and 2 for m = 1, simplifies to
o11u0
2 � b2

20u0
2 ¼ 0 where b2

20 ¼
12a
lt2

ð61Þ
From the nontrivial boundary condition s0
12jx1¼�w ¼ 0, one also has
½o1u0
2�x1¼�w ¼ �

d
t

ð62Þ
Thus, u0
2 becomes
u0
2 ¼ �

d
t

sinhðb20x1Þ
b20 coshðb20wÞ ð63Þ
For n = 1, the only nontrivial equation is the first of Eqs. (31). Considering Eq. (22) and the coefficients
given in Tables 1 and 2 for m = 1, the second of Eqs. (32) for n = 0, and Eq. (63) for u0

2, the governing equa-
tion for u1

1 is obtained as
o11u1
1 � b2

11u1
1 ¼ �

2

t
kþ l

a
d
t

coshðb20x1Þ
coshðb20wÞ �

10l
at2

d with b2
11 ¼

60l
at2

ð64Þ
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Nontrivial boundary condition at the lateral sides: s1
11jx1¼�w ¼ 0 requires
½o1u1
1�x1¼�w ¼ �

2

t
k
a

d
t

tanhðb20wÞ
b20

ð65Þ
Then, one obtains u1
1 as
u1
1 ¼ a11 coshðb11x1Þ �

2

t
lþ k

a
d
t

1

b2
20 � b2

11

coshðb20x1Þ
coshðb20wÞ þ

d
6

ð66Þ
where
a11 ¼ �
2

t
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d
t

1

b11b20
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sinhðb11wÞ 1� lþ k

k
b2

20

b2
20 � b2

11

" #
ð67Þ
Consequently, the displacement components ui and apparent shear modulus la are evaluated from the sec-
ond of Eqs. (33) and (36) as, in view of Eqs. (37) and (38),
u1 ¼

� 30

t
k
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d
t

tanhðb20wÞ
b11b20

coshðb11x1Þ
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ð68Þ
4.2. Discussions of analytical solutions

Knowing the expressions for displacement distributions, expressions for stress distributions can be
obtained from stress–displacement relations of linear elasticity. Analytical solutions derived using the approx-
imate theory can be used to plot the displacement/stress distributions at any section of an infinite-strip-shaped
elastic bonded layer under its three basic deformation modes or under any combinations of these modes. In
addition, the effects of two main parameters, shape factor (S) and Poisson�s ratio (m), on the layer behavior,
that is, on the displacement/stress distributions or magnitudes/locations of maximum stresses developed in
the layer or on its compression/bending/apparent shear modulus, can be studied thoroughly.

4.2.1. Compressive behavior

Fig. 3 illustrates the effect Poisson�s ratio on lateral normal and shear stress distributions through the
layer thickness under uniform compression. To be able to see the effect of shape factor besides Poisson�s
ratio, stress distributions are plotted for two different shape factors; S = 1, representing low shape factor
(LSF) layers, and S = 30 representing considerably high shape factor (HSF) layers. It is to be noted that
the shape factor of a layer of infinite-strip shape with a thickness of t and width of 2w equals to the ratio
of its half-width to its thickness; i.e., S = w/t. To study the behavior of a bonded layer over a wide range of
compressibility, stress distributions are plotted for m ffi 0.5, 0.499, 0.45 and 0.3.

In Fig. 3, lateral normal stress distributions are plotted along the centerline (x1 = 0), where it takes its
maximum value. It is known that, under uniform compression, shear stress increases in horizontal direction
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Fig. 3. Effect of Poisson�s ratio on lateral normal and shear stress distributions through the layer thickness under uniform
compression.
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as moved from centroid to the edges, where it suddenly drops to zero due to the stress-free boundary con-
ditions. It is also known that stress singularities observed at the edges are usually confined to a very limited
region (Gent et al., 1974). Therefore, shear stress distributions given in Fig. 3 are plotted along the vertical
axis at x1 = 0.9w, which is thought to be sufficiently away from the load-free edge and at the same time
adequately close to the points where shear stresses are maximum. It should also be noted that, in the plots,
stress values are normalized with respect to the uniform pressure, i.e. Ecec.

As shown in the plots, while lateral normal stress is constant through the layer thickness for S = 30, it
has a parabolic variation for S = 1. It is to be observed that this is the prediction of the first order theory
and is valid, as noted before, when S P 1. The behavior of the LSF layer is also different from that of HSF
layer in that while considerable shear stress develops in the region close to the outer boundary for S = 1, it
is almost negligible for S = 30. Shear stress distribution is linear, even for S = 1, for nearly incompressible
materials. On the other hand, as material becomes compressible, the distribution looses its linearity for the
LSF layer. It is also remarkable that, for S = 1, incompressible behavior is attained at m = 0.499 whereas
stress values are much more sensitive to the changes in material properties for S = 30.

Fig. 4 contains some results for maximum axial and shear stresses. Our study indicated that stress com-
ponents reach their maximum values at different but fixed locations. While (s22)max occurs at (x1 = 0,
x2 = 0), (s11)max occurs at (x1 = 0,x2 = ± t/2) and (s12)max at (x1 = ± w,x2 = ± t/2). It is also observed that
the magnitudes of maximum stresses are functions of both shape factor and Poisson�s ratio. As shown in
Fig. 4a, (s22)max for an incompressible layer increases with shape factor until it reaches to a peak value
of 1.5 Ecec at about S = 10, beyond which it remains constant. The behavior of compressible layers is
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Fig. 4. Effect of shape factor and Poisson�s ratio on maximum axial and shear stresses under uniform compression.
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considerably different from this incompressible behavior: for compressible layer, (s22)max reaches its peak
value at a critical shape factor smaller than S = 10 depending on the compressibility of the material; beyond
the critical value of shape factor, (s22)max softens with increasing S. The significance in the decrease is af-
fected from Poisson�s ratio. The effect of Poisson�s ratio on the value of (s22)max is more apparent in the
second of Fig. 4a. In the studied range of shape factors, (s22)max increases with increasing Poisson�s ratio
until the limiting incompressible value is approached. The lower the shape factor, the lower the value of
Poisson�s ratio at which the plateau is reached. This is consistent with the earlier observation that stresses
developed in LSF layers are not influenced much by the changes in Poisson�s ratio close to 0.5.

Similar to the axial stress, (s12)max attains its maximum value at very low shape factors, typically at S = 1
for m P 0.45 (Fig. 4b). For this critical shape factor, the magnitude of (s12)max is observed to increase as
incompressibility is approached. For m P 0.45, as shape factor increases beyond S = 1, the magnitude of
(s12)max decreases. The amount of decrease is much higher at nearly incompressible materials. When the
effect of Poisson�s ratio on (s12)max is studied carefully, it is recognized that for about m P 0.4, (s12)max

developed in an elastic bonded layer of S = 1 is always the highest in the range of S P 1. For S > 1, after
the maximum is reached, (s12)max starts to decrease with increasing Poisson�s ratio until the incompressible
behavior is reached.

4.2.2. Bending behavior
Although the derivation is not included in Section 4.1.2, it is not difficult to show that the zeroth order

theory leads to the same expression for bending modulus derived by Tsai and Lee (1999) for infinite-
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strip-shaped bonded elastic layers. Fig. 5 compares the predictions of zeroth and first order theories for
bending modulus. As shown in the figure, the predictions of zeroth and first order theories exactly match
in the studied range of parameters.

In design calculations, it is a common practice to represent the effective bending modulus Eb of a bonded
elastic layer in terms of its compression modulus Ec. A factor of five (Chalhoub and Kelly, 1991) is used for
the ratio of Ec to Eb for infinite-strip-shaped bonded layers. In Fig. 6, the Ec/Eb ratio is plotted for infinite-
strip-shaped bonded layers with different shape factors and Poisson�s ratios using the third of Eq. (52) and
third of Eq. (60). As shown in the figure, the above-mentioned value of five is only valid for incompressible
materials and for considerably high shape factors. For instance, for m = 0.499 and for S > 5, as shape factor
increases, this value of ratio will significantly underestimate the true value of bending modulus.

Similar to the compression problem, for pure bending problem, stress distributions or maximum stresses
can be plotted for different values of shape factor and Poisson�s ratio to investigate the effects of these two
important parameters on the layer behavior. In this section, only maximum hydrostatic tension developing
in an infinite-strip-shaped layer under pure bending is investigated for the study of ‘‘internal rupture’’
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phenomena, which is one of the failure modes a bonded rubber layer can undergo under pure bending
(Gent and Meinecke, 1970; Horton et al., 2002b). Internal rupture of a rubber layer is defined by Gent
and Meinecke (1970) as the failure of the layer in such a way that ‘‘any small cavity will increase indefinitely
in size’’ when the magnitude of hydrostatic tension exceeds a critical value, typically 3/4E where E is the
Young�s modulus of the rubber. Using the pressure approach of Gent and Lindley (1959), Gent and Mei-
necke (1970) obtained the following values for the location (x	1) and magnitude (/*) of critical rotation at
which an infinite-strip-shaped bonded rubber layer will fail due to internal rupture under pure bending:
Fi
x	1 ¼
wffiffiffi

3
p and /	 ¼ 27

ffiffiffi
3
p

16S3
ð69Þ
It should be recognized that these values are derived based on the incompressibility assumption. However,
as it can be shown, Poisson�s ratio has significant effect on stress values. At this point, it should be empha-
sized that, unlike the compression case, in a bonded elastic layer subjected to pure bending, normal stresses
may reach their maximum values at different locations at a specific horizontal section and that their exact
locations highly depend on shape factor and Poisson�s ratio. In other words, the maximum normal stress
components developed in a bonded elastic layer subject to pure bending have not fixed, but varied locations
depending on the geometric and material properties of the layer. Our study based on first order theory indi-
cated that the maximum pressure occurs at locations where the lateral normal stress reaches its maximum
value.
a. variation with respect to shape factor

b. variation with respect to Poisson’s ratio
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Fig. 7 shows the effects of shape factor and Poisson�s ratio on both the location, denoted as xm1S or xm1P,
and magnitude of maximum pressure. Pressure values are normalized by SEb/ which corresponds to the
maximum bending stress developed in the corresponding unbonded layer predicted by simple beam theory
as noted by Tsai (2003). As shown in the figure, shape factor and Poisson�s ratio have significant influence
on both the location and magnitude of maximum pressure. xm1S ¼ x	1 holds only for considerably high shape
factors and incompressible materials. For lower shape factors, the site of failure moves towards the edge of
the layer as shape factor decreases.
4.2.3. Apparent shear behavior

As mentioned before, although some researchers (e.g., Rivlin and Saunders, 1949; Horton et al., 2002b)
obtained approximate expressions for apparent shear modulus of bonded elastic layers, these expressions
were all derived based on the assumption that plane sections remain plane. Moreover, they only considered
incompressible materials. Using the first order theory presented in this study eliminates both of these
assumptions but has retained the parabolic lateral surfaces assumptions. The resulting expression is func-
tions of both shape factor and Poisson�s ratio. It seems to be beneficial to study the effects of each param-
eter on the apparent shear modulus.

In Fig. 8 the variation of the ratio of apparent shear modulus to true shear modulus (la/l) with each
parameter is given. From the figure it is clear that, for incompressible materials, the apparent shear mod-
ulus of a bonded elastic layer equals its true shear modulus and is independent of the value of shape
factor. Fig. 8 also shows that the effect of compressibility becomes important only if shape factor is con-
siderably small. This result is compatible with the common acceptance that while the compressive and
bending behavior of a bonded rubber layer can be considerably different than the behavior of corre-
sponding unbonded layer, the effect of the bonded surfaces to its shear behavior is negligible. Layers
of high shape factors are almost insensitive to the changes in Poisson�s ratio. On the other hand, for
low shape factors like S = 0.5, apparent shear modulus decreases considerably with decreasing Poisson�s
ratio.

As far as displacement and stress distributions are concerned, it is valuable to compare the analytical
predictions of first order theory (FOT) with the numerical results of boundary element method (BEM).
Figs. 9 and 10 illustrate displacement and stress distributions in a bonded elastic strip with a shape factor
of S = 1 and for m = 0.3. It is remarkable that analytical predictions of FOT for both displacement and
stress distributions are in very good agreement with the BEM results. It is also worth noting that
la, BEM = 0.848 while la, FOT = 0.846 for the considered S and m values.
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5. Conclusions

In this study, behavior of bonded elastic layers under three fundamental deformation states, uniform
compression, pure bending and apparent shear, is formulated by using the approximate theory based on
modified Galerkin method developed by Mengi (1980). Selecting Legendre polynomials as distribution
functions and retaining the order of the theory arbitrary, most general forms of governing equations are
obtained for the analysis. The formulation can easily be applied to a bonded elastic layer by specifying
the geometric and material properties of the layer and selecting the order of the theory. After the solution
of governing equations for unknown weighted displacements, determination of displacement/stress distri-
butions or any other parameter, such as, stiffness of the layer is straightforward as explained in Sections 3.2
and 3.3. The application of the formulation is exemplified by solving the governing equations for infinite-
strip-shaped layers. For each deformation mode, closed form expressions are derived for displacement/
stress distributions and relevant effective modulus.

It has been realized that due to the use of polynomial functions, the zeroth order theory leads to the same
expressions that have been derived in literature based on two kinematics assumptions: the plane sections
remain plane and parabolic bulging (e.g., see Tsai and Lee, 1998, 1999). The increase of the order of
the theory to one is shown to eliminate the first kinematics assumption, retaining solely the parabolic bulg-
ing assumption. Governing equations clearly reveal that the second order theory also removes this last
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assumption. It is not always possible to derive closed form solutions in the case of higher order theories due
to the complex and coupled forms of governing equations.

Analytical solutions derived using the approximate theory can be used to determine the displacement/
stress distributions at any section of an infinite-strip-shaped elastic bonded layer under its three basic defor-
mation modes and also under their combinations, and to study the effects of two main parameters, shape
factor and Poisson�s ratio, on the layer behavior. The following conclusions may be drawn for the behavior
of infinite-strip-shaped elastic layers bonded to rigid surfaces from the solutions obtained through first
order theory.

• Shape factor and Poisson�s ratio are the two basic parameters controlling the behavior of a bonded elas-
tic layer. They have significant effects not only on its stiffnesses but also on the displacement/stress dis-
tributions and on the magnitudes and/or locations of the maximum stresses.

• Stress assumptions of the pressure method in uniform compression case appear to be valid only for HSF
layers. These assumptions involve assuming uniform distribution for normal stresses and linear distribu-
tion for shear stress over the thickness of the layer, which are inconsistent with the results presented in
Fig. 3 for LSF layers.

• LSF layers under uniform compression reach their incompressible behavior at a Poisson�s ratio of about
m = 0.499. On the other hand, stress values are much more sensitive to the value of Poisson�s ratio for
HSF layers, even for nearly incompressible materials. For example, the use of 1.5Ecec for the maximum
value of normal stress (by assuming incompressible behavior) will be very misleading for HSF layers. It
is also worth noting that for about m P 0.4, the maximum shear stress developing in a layer of S = 1 is
always the highest in the range of S P 1.

• It is shown that the predictions of zeroth and first order theories for bending modulus match exactly for
S P 1. Considering the complexity of the expression predicted by first order theory, the simpler formula
of zeroth order theory is suggested for the use in design calculations. Also, a care should be taken if one
prefers to express the bending stiffness of a bonded elastic layer in terms of its compression modulus in
design calculations. Using the incompressible value of 5 for Ec/Eb ratio will seriously underestimate the
true value of bending modulus, even if a compressible formulation is used in the calculation of Ec, espe-
cially for compressible HSF layers.

• Determination of the magnitudes and locations of maximum hydrostatic tension developing in a bonded
elastic layer subject to bending is essential for investigating its internal rupture behavior. It is shown that
the prediction of Gent and Meinecke (1970) is valid only for incompressible HSF layers. For lower shape
factors or compressible materials, the site of failure shifts towards the edge of the layer and the value of
maximum hydrostatic tension gets smaller.

• The theory is also capable of formulating the apparent shear problem. The closed form solutions
obtained using the first order theory may be thought to be the first trial solution for apparent shear
behavior of bonded elastic layers of compressible materials. When plotted with respect to Poisson�s ratio
and shape factor, it is found that the apparent shear modulus not only depends on the geometric prop-
erties of the layer but is also affected significantly from the compressibility of the material especially if the
shape factor of the layer is considerably low.
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